
29 november 2023 ∙ Tegenwoordig zie je op nogal wat stations powerhouses en provisorische oplossingen staan. Vaak voor een aantal maanden of een jaar. Maar er zijn ook privisoria die er al veel langer staan. Nederlands recordhouder is Crailo 50/10 kV, en na 23 jaar wordt het provisorium eindelijk afgelost door een permanent station.
Een vol net is van alle tijden. Het kwam rond de eeuwwisseling ook wel eens voor. Als het niet op te lossen valt met operationele maatregelen binnen het bestaande net, zal er een nieuw koppelpunt moeten worden gecreëerd met het bovenliggende netvlak. In het Gooi is dat een 50 kV-net. In de omgeving van Laren liep Nuon in 1999 tegen deze kwestie aan en men besloot tot het aanleggen van een nieuw 50 kV-station. Op papier niet zo spannend, maar toen begon het gedoe. Of het kwam door geldgebrek, aquisitie van een terrein, mopperende Gooische vrouwen of een halfbakken wijziging in de netstrategie, we weten het niet en het is in de mist der tijd verdwenen wat de reden was dat het niet lukte om meteen een permanent station te bouwen. Wat we wel weten is dat de nood hoog genoeg was om tijd te kopen met een sneller te bouwen en minder vergunningsplichtig provisorium.
Vanuit 's Graveland werd een zes kilometer lange, enkelvoudige 50 kV-kabel gelegd naar een verloren hoekje van het militair oefenterrein Crailo. Op het uiteinde van de kabel werd een 50/10 kV trafo aangesloten zonder schakelaars, zodat de machine op een zeer lang steeltje vanuit 's Graveland zat. Naast de trafo werd een omgebouwde zeecontainer opgetuigd tot een schakelruimte. Voor de goede sier werd de container opgeschilderd in Nuon huisstijl geelpaars, er werd een hek omheen gezet en de 10 kV-zijde werd verknoopt met het reeds aanwezige net van Laren. De stroom werd erop gezet en nu kon men met wat meer rust in het achterste verder zoeken naar een permanent terrein voor het uiteindelijke station.
Iedereen die wel eens is verhuisd of in een nieuwe woning is gaan wonen zal het herkennen: hoe lang duurde het wel niet voordat de laatste lamp die nog aan twee draadjes aan het plafond bungelde werd vervangen door de uiteindelijke lamp? Als iets het eenmaal provisorisch doet is de druk van de ketel en zakt het onderliggende probleem terstond tien stappen op de prioriteitsladder. Zo verging het ook Crailo. In opeenvolgende KCD's vanaf 2003 zakt Crailo langzaam weg van een lopend project tot een bodemprioriteit, uiteindelijk slechts aangeduid door een laf zinnetje 'Crailo is een provisorium' in de assetlijsten. Netbeheerder Nuon, die na de splitsing een tijdje in Continuon en daarna in Liander veranderde, had intussen wel andere dingen aan het hoofd dan dat kleine provisorium op een gaar onzichtbaar hoekje van een inmiddels uit gebruik geraakt oefenterrein.
Tot circa 2015, toen kreeg Liander weer aandacht voor Crailo. De vraag naar capaciteit in de regio nam toe en wel zodanig dat bij een storing van Crailo 50 kV of een storing van de 10 kV-kabels vanuit Hilversum of Naarden de overblijvende invoeding het nauwelijks nog in zijn eentje aan kon. Het plan voor een permanent station met redundantie in schakelmogelijkheden werd afgestoft en er zal met frisse moed aan zijn begonnen. Al gauw bleek dat het probleem dat in 1999 de oorzaak was om überhaupt voor een provisorium te kiezen nog altijd actueel was: er bleek moeilijk een locatie voor een permanent station te vinden. Wie op de luchtfoto kijkt kan zich daar grotelijks over verbazen, want op het voormalige militaire terrein is ruimte beslist geen probleem. Maar ja, het is Nederland en we kijken nergens meer van op.
Jarenlang werden verschillende locaties onderzocht,zonder resultaat. Uiteindelijk vond Liander pas in 2022 een terrein om op een paar honderd meter van het provisorium een permanent station te kunnen bouwen. De bestaande enkelvoudige kabel wordt dan verlengd. Het lijkt er niet op dat er ook een tweede kabel wordt gelegd. Toch gaat de leveringszekerheid omhoog ten opzichte van het provisorium wanneer er eenmaal meerdere verschakelbare trafo's achter een enkelvoudige steeklijn staan omdat de trafo's nu onderhoudbaar worden zonder VNB.
Liander wil het nieuwe Crailo halverwege 2024 in gebruik nemen. Als we aannemen dat dat wordt gehaald en dat het provisorium medio 2000 onder spanning kwam, dan is er bijna een kwart eeuw sprake geweest van een tijdelijke situatie, waarbij je je kan afvragen wat het idee van tijdelijk nog waard is in dit geval. Er zijn zelfs permanente stations geweest die korter hebben bestaan dan provisorium Crailo, zoals Hoogeveen 220 kV. Feit is wel dat we met het permanent maken van Crailo een opmerkelijke netsituatie verliezen, maar dat doen we bij HoogspanningsNet niet zonder hem bij te schrijven in het rariteitenkabistroomnet.
Afbeeldingen: dronefoto van Crailo 50/10 kV, een typisch provisorium met weinig opsmuk en met de trafo op een steeltje. Midden en onder: het nieuwe Crailo als permanent station met meerdere trafo's en een gemetseld schakelgebouw (hier nog in aanbouw). Foto's met dank aan PJK. Bekijk ook de netkaart, momenteel een overgangssituatie.
17 november 2023 ∙ We zijn inmiddels gewend aan termen als congestie, vluchtstrook, spitsmijden en curtailment. In de soap van een vol stroomnet is nu weer een nieuw escalatieniveau bereikt. In Almere komt op bepaalde plekken de mogelijkheid om nieuwe woningen aan te sluiten in gevaar.
Tot nu toe was een vol stroomnet nog een zaak die als het ware een niveau hoger werd gespeeld dan gewone stervelingen met een huur- of koophuis. Aansluit- en capaciteitsproblemen waren iets voor zonneparken, bedrijven en heel soms eens een voetbalkantine met zonnepanelen. Thuis hadden we er betrekkelijk weinig last van. Natuurlijk, de rekening nam toe door de netverzwaringen en in sommige straten zijn er spanningsproblemen door teveel omvormers op het net. Maar het licht bleef wel gewoon branden. En iedereen die een aansluiting van 3x80A of lichter had (of aanvroeg) kon wel geholpen worden. Tot nu toe dan, in delen van Almere.
Almere is aldus Omroep Flevoland de eerste plek in het land waar het elektriciteitsnet zo vol zit dat er op bepaalde plekken binnen de stad eigenlijk geen enkele aansluitcapaciteit meer kan worden uitgegeven, ook niet voor nieuwe woningen of scholen. Operationele maatregelen zoals spitsmijden (afnemers belonen om de piek in hun vraag te verplaatsen in de tijd) zijn door Liander onderzocht en bleken niet afdoende te werken. Verzwaring kost tijd, waardoor in tussentijd een beperking moet worden ingesteld die we nog niet eerder op deze manier zagen.
Ook wij kennen niet de precieze details: het maakt nogal wat verschil of de schaarste wordt veroorzaakt door een tekort aan MS-hoofdkabels, door schaars trafovermogen (150/10 kV), door de nettopologie van Almere met zijn enkelvoudige ringvormen, of door een capaciteitstekort op de inkomende hoogspanningslijn vanuit Zeewolde. Wacht even, geen lijnén? Wanneer we op de netkaart of beter nog, op een netschema kijken, dan zien we dat heel Almere met slechts twee 150 kV-circuits in het hoogspanningsnet achter Zeewolde hangt. De kabel vanuit 's Graveland wordt bij normaalbedrijf niet gebruikt vanwege problemen met doortransport vanuit deelnet Noord Holland. Bij onderhoud of andere nood kan deze worden gebruikt, en alleen met de nodige zorgvuldigheid. De hele stad hangt dus op een redundante steeklijn met N-1 veilig een capaciteit van 162 MVA. Hoewel er in Almere wel een kleine gascentrale staat die wat eigen productie levert in dit netdeel, is 162 MVA in de ordegrootte van klamme handjes.
De 380 kV hoogspanningslijn die bovengronds door Almere loopt kan vijftien keer zoveel vermogen vervoeren, maar die heeft er geen station. Dat is ook logisch, de lijn is ouder dan Almere dat er later omheen is gegroeid. Nu heeft Tennet wel plannen een station in te knippen met een 380/150 kV transformatorstap en dat zal op lange termijn de problemen oplossen. In het nieuwste concept-investeringsplan vermeldt Tennet dat een dergelijk station pas rond 2030 kan zijn gerealiseerd. (Zoek in het IP-concept op ALR150, ALR380 en knelpunt 1407 om meer te lezen.) Ook het 150 kV kabelnet in Almere zelf geeft weinig mogelijkheden om bij wijze van spreke vluchtstroken (redundante capaciteit) in te zetten. Dat is er namelijk niet. Het net bestaat in dit opzicht jammerlijk uit enkelvoudige kabels zonder N-1 die in een ringvorm met een steeklijn op Pampus worden bedreven. Er liggen geen dubbele verbindingen tussen twee dezelfde stations zodat het niet mogelijk is om bij overproductie van zonnestroom of windstroom tijdelijk redundante capaciteit te benutten.
Wat nu? We kunnen erop vertrouwen dat ook bij Tennet en Liander met verstand wordt gekeken naar wat hier kan helpen. Het feit dat de situatie überhaupt zo ver is gekomen vertelt ons dat dit niet eenvoudig is. De oplossingsrichting hangt af van de precieze technische reden. Als het middenspanningsnet klem zit, dan heeft het bijvoorbeeld weinig zin om het hoogspanningsnet te verzwaren met bijvoorbeeld een provisorische aftak op de 380 die eerder gereed kan zijn dan 2030. Operationele maatregelen, dus zware verbruikers verzoeken hun verbruik beter te spreiden, is op dit moment de enige manier die direct kan helpen, zij het dus onvoldoende.
Overigens, wie nu moppert dat het ongehoord is en dat het zijn weerga niet kent in Nederland, pak er eens een oude krant bij. Zo recent als de eerste helft van de jaren 80 kende Zaltbommel nog een vorm van gebruiksbeperking in de avonden omdat de kleine 50 kV-lijn vanuit Den Bosch het niet meer aan kon. Pas toen een nieuwe zwaardere 150 kV steeklijn vanuit Tiel gereed kwam was het probleem opgelost.
Afbeeldingen: recent is de doorgaande 380 kV transportverbinding in Almere nog van nieuwe draden voorzien. Toch heeft de stad daar niks aan, want zogezegd is het een snelweg zonder afrit, wat we ook kunnen zien op netkaarten of op een netschema zoals op de onderste afbeelding (vergroting hier). We weten echter nog niet hoe groot het aandeel van dit gegeven is in de reden van het schaarsteprobleem in Almere zelf.
23 maart 2023 ∙ Aanleg van verbindingen met een spanning tot en met 150 kV gebeurt tegenwoordig ondergronds. Graven is lastig, want het vereist een werkstrook, zorgvuldig spitten langs bestaande infra en het geeft overlast door opengebroken straten. Boren neemt daardoor een grote vlucht. En inmiddels is boren geen half werk meer.
Welkom op IJland, een nieuw opgespoten schiereiland oostelijk van Amsterdam in het IJ. Een leuke naam, maar hoe moeten we nu ooit nog aan kinderen leren met welke ij/ei je ijland/eiland schrijft? Dat terzijde, op de zandplaat wordt een nieuwe woonwijk gebouwd met de naam IJburg. Die heeft stroom nodig, of eigenlijk moeten we zeggen, die heeft capaciteit nodig. Er kan immers ook worden teruggeleverd. Capaciteit voor een hele woonwijk wordt al snel een klus voor 20 kV. Netbeheerder Liander werd een beetje nerveus en in combinatie met een groter ontwikkelingsplan is er besloten meteen grondig te werk te gaan: er is een aansluiting rechtstreeks op het 150 kV-net gemaakt zodat er een robuuste 150/20 kV transformatiestap is aangelegd op IJland zelf.
Aanleg van zo'n 150 kV kabel lijkt op de kaart eenvoudig. Op amper twee kilometer ligt trafostation Diemen 150 kV, dus wat een gemak, hoe dichtbij kan het? Twee of drie circuits richting een nieuw trafostation IJburg zou met een luchtlijn slechts een stuk of zes masten vereisen. Maar omdat 150 kV niet meer bovengronds wordt neergezet moet er een kabel worden gelegd. En dat is hier ingewikkelder dan bovengronds. Op het korte tracé moeten een kanaal, een weg, een zowat heilig natuurgebied (waar je weinig van hebt ben je zuunig op) en een paar honderd meter van het Markermeer worden gekruist. Maatwerk dus. Zeker als alles met klassieke open ontgraving zou worden aangelegd. Nu is in de afgelopen jaren op meerdere manieren geëxperimenteerd met boren en grondverdringen om kabels aan te leggen. Een zware kabelploeg is toegepast in het Groene Hart, maar dat kan alleen als je op het tracé geen andere bestaande infra doorsnijdt. Dat is in Nederland vrijwel onmogelijk en bovendien vereist een kabelploeg zwaar materieel ter plekke zodat de enige winst de aanlegsnelheid is. Van deze aanlegmethode hebben we sinds de proef in het Groene Hart verontrustend weinig meer vernomen…
Succesvoller is HDD, Horizontal Directional Drilling, of in het Nederlands, een gestuurde boring. Deze techniek is van oorsprong afkomstig uit de delfstoffenexploratie en de olieboringen, maar het bleek ook een waardevolle techniek te zijn in de civiele infra. Met een gestuurde horizontale boring kan over vele honderden meters lengte met grote precisie een ondergronds bochtig tracé worden gemaakt waarin een mantelbuis de grond in wordt getrokken. Daar binnenin kan dan een kabel of leiding worden getrokken. Zo kan bijvoorbeeld een kanaal, een bos of zelfs een hele zeearm worden gekruist zonder dat er aan het aardoppervlak iets van te zien is. Deze boortechniek heeft in de afgelopen tien jaar een snelle opmars gemaakt.
Tegenwoordig worden hoogspanningskabels reeds in hoofdzaak geboord. Er wordt alleen nog gegraven op plekken waar het weinig uitmaakt dát er wordt gegraven. Wat nog niet eerder was gedaan was een kabel in zijn geheel boren in één1400 meter boring over de volle lengte van de verbinding. IJburg had die primeur. Vanaf trafostation Diemen werd naar IJburg geboord en vanaf IJburg ook richting Diemen. In het midden kwamen beide boringen elkaar tegen, 'meet-in-the-middle', op ruim dertig meter diepte. Drie keer is er op die manier geboord, waarbij de mantelbuizen in twee boringen van kabels uit één stuk (1900 meter) zijn voorzien. De derde mantelbuis is voor dit moment leeg gebleven en dient als reserve voor toekomstige verzwaring.
Normaal is er altijd wat stekeligheid tussen pylon geeks die van bovengrondse lijnen houden en het fenomeen 'grondkabel'. Maar als er dan toch gekabeld wordt, dan is gestuurd boren een bijzonder mooie manier om bijna magisch hindernissen te kruisen en een hele verbinding aan te leggen. We gaan het nodig hebben in deze tijden vol haastige verzwaringen.
Afbeeldingen: tracé van Diemen – IJburg 150 kV op de netkaart. De hele verbinding (drie circuits, waarvan twee in dienst en eentje op reserve) is met één zeer lange boring aangelegd vanaf twee zijden, waarbij de boringen elkaar in het midden tegenkwamen. Onder: intredepunt van een kleine HDD-boring, de mantelbuis op de voorgrond wordt de grond in getrokken wanneer de boor na de boring teruggehaald wordt. Dit was maar een klein borinkje, maar dezelfde techniek kan ook flink worden opgeschaald met een langere en dikkere buis.
20 november 2022 ∙ We zijn er al net zo aan gewend als aan files op de weg: het stroomnet zit vol. Afgelopen week was het weer bal in noordelijk Nederland. Naast 'de vluchtstrook', congestiemanagement en cable pooling willen Tennet en Enexis nu ook dat grote klanten elektrisch gaan spitsmijden. Men wijst snel naar dunne kabels, maar veel minder snel kijkt men naar een historisch verworven aspect in de transportschaarste in grote delen van Nederland: waar is de tussenspanning?
Nederland is vol met van alles en dus ook met stroom. Op zich een goed teken, want ook al mislukt de ene na de andere klimaattop, stiekem wordt er gestadig geëlektrificeerd en steeds meer van die energie wordt decentraal opgewekt. Decentrale opwek is moeilijk te controleren zodat er pieken ontstaan die met het weerbeeld mee bewegen. Ook vindt decentrale opwek vaak plaats in dunbevolkte gebieden waar meer ruimte is voor flinke arealen zonnepanelen op staldaken en op de grond, en voor windparken. Juist die dunbevolkte landsdelen hebben een dun elektriciteitsnet. Ooit was dat de juiste keuze, want kleine dorpjes en boerderijen gebruikten nu eenmaal niet zoveel stroom. Het is dus niks verwijtbaars, maar we moeten er wel plotseling een mouw aan passen.
Het netwerk verzwaren helpt. Maar het helpt ook als de spitsen minder scherp worden gemaakt door vraag en aanbod beter over de dag te verdelen. Aan aanbod kan je weinig doen, we kunnen de wind en de zon niet sturen. Dus het moet aan de vraagkant gebeuren. Dat is precies wat Tennet en in dit geval Enexis in Brabant en Limburg al op poten aan het zetten waren, maar wat nu ook al nodig blijkt te zijn in Overijssel, Drenthe en Friesland. Door zware verbruikers te prikkelen hun piekverbruik opzettelijk meer gelijk te trekken met opwekpieken is er nog steeds wel een zwaarder netwerk nodig tijdens die momenten, maar het vermogen hoeft minder ver te reizen op het hoogspanningsnet. Daardoor scheelt het alsnog in het aantal kilometer te verzwaren kabels. Of helemaal sec gezegd, die draden moeten er toch wel komen, maar we kopen onszelf meer tijd om die klus te klaren.
Toch is er nog wat anders aan de hand, dat zelden wordt benoemd. Het is het gevolg is van een gebrek in delen van het Nederlandse elektriciteitsnet dat vrij uniek is. Kijken we op de netkaart, dan zien we dat de meest rode gebieden vaak ook de gebieden zijn waar tussenspanning ontbreekt. Het zijn plekken waar het middenspanningsnet 10 kV voert, het hoogspanningsnet 110 kV of 150 kV, en waar er tussenin niets is. Als we over de grenzen kijken zien we dat zo'n groot gat tussen twee hiërarchische vermaasde netten vrij zeldzaam is. Meestal is tussen zover uiteen liggende netvlakken een extra netvlak van 33 kV, 50 kV, 60/66 kV of 70 kV aanwezig. De reden waarom dit zo is gekomen zou voer kunnen zijn voor een apart artikel, maar vandaag zitten we eerst met de problemen die dat geeft.
Een elektriciteitsnetwerk is het meest efficiënt te bedrijven als de zogeheten overzetverhoudingen in de spanningscascade telkens niet verder uit elkaar liggen dan grofweg een factor vijf. Dus van 380 kV naar 110 kV (factor drieënhalf) gaat prima, maar direct van 110 kV naar 10 kV (een factor elf) is eigenlijk te veel. De reden daarvan is dat de maximale vermogens die je met koppeltrafo's kan overzetten bij grote overzetverhoudingen afneemt. Trafo's, maar ook schakelaars en andere apparatuur, zijn doorgaans ontworpen op een maximale stroomsterkte van 4 kA. Bij een grote overzetverhouding heb je al gauw 4 kA te pakken op de secundaire zijde, terwijl vanuit de primaire zijde nog maar relatief weinig vermogen wordt opgenomen. Wil je toch een groter vermogen koppelen, dan heb je meer trafo's tegelijk nodig. Ook moeten transportkabels in het MS-netvlak dikker zijn, of je hebt meer trafostations en meer invoedingspunten nodig om de twee sterk verschillende netten alsnog te koppelen.
In bepaalde delen van het land waar het hoogspanningsnet voldoende dicht is vermaasd is een vrij hoge dichtheid aan trafostations te vinden. Op zulke plekken vervult 150 kV tegelijk de functie van hoogspanning en tussenspanning. Maar op plekken waar het net dunner is, met grotere openingen, is dat lastiger en worden lange afstanden met 10 kV overbrugd. Daar alsnog een tussenspanning introduceren waarmee je een tussenkoppeling kan maken en ook nog wat transport kan uitvoeren is niet eenvoudig. In delen van het land waar het alsnog wordt geprobeerd wordt meestal voor 20 kV gekozen. Dat is opmerkelijk, want de winst van 20 kV op 10 kV is beperkter dan wanneer er voor 33 kV zou worden gekozen, terwijl ook 33 kV een spanning is waar veel spullen voor worden gemaakt. Het is een standaard geworden in de windparkenwereld en het wordt ook daadwerkelijk gebruikt als publieke tussenspanning in bijvoorbeeld Engeland en delen van België (daar als 30- of 36 kV). Een bezwaar aan 33 kV kan zijn dat het niet altijd in bestaande gebouwen en huisjes past, maar op plekken waar sprake is van daadwerkelijk de noodzaak aan nieuwe aanleg hoeft dat geen rol van betekenis te spelen.
Liander is in het midden en het westen van het land op zijn schreden teruggekeerd met het saneren van 50 kV tussenspanning ten gunste van 20 kV. Er wordt nu weer gekeken naar levensverlenging en zelfs nieuwe aanleg van 50 kV. Enexis intussen lijkt heilig te geloven in 20 kV om het gat tussen 10 kV en Tennet te verkleinen.
Het is ons bij HoogspanningsNet niet duidelijk waarom regionaal netbeheerders het niet aan lijken te durven om in tussenspanningsloze gebieden waar echte nieuwe aanleg nodig is hoger te kijken dan 20 kV. We zijn bekend met het '20 kV-ready'-principe, waarbij tegen slechts geringe meerprijs 20 kV-klare spullen worden toegepast die tot nader order nog worden opgenomen in een 10 kV-net. Die maken het later mogelijk om naar 20 kV op te schalen. Maar dat is nog steeds geen antwoord op de vraag waarom bij volledig nieuwe aanleg niet de slag naar een iets hogere spanning wordt gemaakt. Wie volledig nieuw aanlegt kan immers vrijer kiezen tussen technische potentie, kosten en strategisch verstandige investeringen.
Waarom die angst voor 33 kV? Is het zoveel duurder, echt zoveel groter, of zijn er andere wettelijke kaders? Wie het weet mag het ons zeggen.
Aanvulling: op dit artikel zijn meerdere commentaren ingekomen over dat we wel erg makkelijk over '20 kV-ready' heen waren gestapt. Dat is niet het geval omdat de voordelen daarvan in bestaande 10 kV-netten een andere discussie zijn dan aanleg van een geheel nieuw netvlak dat van meet af aan niet in het bestaande 10 kV-net ingebed behoeft te worden.
Afbeeldingen: veel 50 kV was ooit het zwaarste koppelnet, maar langzaam groeide het net door, hogere koppelspanningen in. Op veel plekken bleef 50 kV echter bestaan en daar hebben we nu geluk mee als het er nog is, al leek het slechts tien jaar terug nog een kwestie van tijd en een hinderlijk relict. Zo snel kan het veranderen. Rechts: gebieden met en zonder tussenspanningsnet tussen de middenspanning van 10 kV en het hoogspanningsnet van respectievelijk 110- en 150 kV. In Friesland legt Liander nu op veel plekken extra 20 kV aan op een plek waar bij volledig nieuwe aanleg ook met 33 kV had kunnen worden gewerkt – of toch kennelijk niet?
30 september 2022 ∙ Het zijn rare tijden en voor je het weet is zelfs je hoogspanningsnet eh.. divers en helemaal wakker. Op de netkaart denken we graag binair: een mastpositie is een steun- of draagmast, of het is een afspanmast die al dan niet een lijnhoek heeft. De waarheid in het veld is niet zo rechtlijnig, en er zijn daadwerkelijk mastposities die van rol zijn veranderd. Het nieuwste voorbeeld van zoiets zien we bij het nieuw op te leveren trafostation Oosterhout.
Goed. Dus je constateert dat Arnhem tegenwoordig meer huizen aan de zuidkant van de Nederrijn telt dan aan de noordkant, dat Nijmegen de Waal oversteekt en dat het gebied tussenbeide helemaal dicht ploft met distridozen, vinexwijken, windmolens en steeds meer objecten die een netaansluiting nodig hebben. Bij Liander hebben ze dat ook gezien en geconstateerd dat deze mate van groei niet het hoofd geboden kon worden met een extra 20 kV kabeltje vanuit Elst, Bemmel of Nijmegen zelf. Er is meer nodig dan het middenspanningsnet kan bieden. Dan kom je automatisch uit bij een netvlak hoger, ofwel je belt de Berg. Zodoende hebben Tennet en Liander in onderlinge samenwerking een nieuw trafostation gesticht op een strategische plek vlak zuid van de A15. Het station zou worden ingeknipt in de Kattenberglijn, de naam die onder ingewijden in gebruik is voor de historisch belangrijke 150 kV-verbinding tussen Nijmegen en Apeldoorn. Het uiteindelijke idee is om het gebied te ontsluiten door middel van een nieuw koppelpunt met het 150 kV-net, en wel in de vorm van drie 150/20 kV 80 MVA trafo's.
Zie daar in een notendop het verhaal van het nieuwe trafostation Oosterhout. Eigenlijk een verhaal zoals dat op veel plekken verteld kan worden in de komende jaren. IJburg, Zevenhuizen, Riegmeer, overal is behoefte aan meer aansluitvermogen voor zowel vraag als teruglevering. Telkens vereist het een samenwerking van de landelijk netbeheerder, de regionale netbeheerder, de lokale overheid en de constructeurs. Daar gaat altijd wel wat mis, maar het meeste gaat gelukkig wel goed en dan verrijst langzaam maar zeker een nieuw trafostation, deze keer gebouwd door Volker Energy en Qirion. Het ontwerpen van zo'n station is momenteel nog maatwerk, maar er wordt steeds meer gestandaardiseerd in zowel nieuwbouw alsook renovatie. Denk aan inschuifvelden zoals op Hengelo Weideweg, maar denk ook aan het makkelijker maken van het opnieuw toepassen van een bewezen oplossing zonder al het rekenwerk vanaf de grond telkens weer opnieuw te moeten doen. Of, oneervol gezegd, als de bouwmethode van een trafocel op plek A voldoet en de omstandigheden op plek B gelijk zijn, dan moet het makkelijker worden om zonder veel omhaal de oplossing te kopiëren.
Toch zal altijd wel wat maatwerk vereist zijn en juist die klussen zijn zowel voor engineers als constructeurs de kers op de taart. Op Oosterhout is die kers te vinden in de vorm van de stationsaansluiting. Het station inknippen in de Kattenberglijn vereist vanwege de ruimtelijk gedraaide vorm en de precieze plek ervan een kabelaansluiting vanaf het zuiden, maar ook een nieuwe eindmast in de verbinding vanuit de noordelijke richting. Een steunmast moet vervangen worden door een gedraaid staande hoekmast en daar zijn nogal wat eisen aan. De nieuwe mast moet voldoen aan de huidige constructienormen. Hij moet tevens bij sterke voorkeur lijken op het bestaande mastmodel waarmee de Kattenberglijn is gebouwd (voor de kenners, om precies te zijn een PGEM 150 kV-dennenboommast I) en hij moet ook nog eens bijna on the fly worden ingepast met zo min mogelijk VNB ofwel tijd waarin de verbinding spanningsloos staat.
Men heeft een nieuwe eindmast ontworpen en laten maken (naar verluidt een kleine veertig ton) die inderdaad sterk lijkt op het bestaande mastontwerp. Hier bij HoogspanningsNet, het absolute hol van de leeuw als het gaat om puriteins mastenkijken, was de teneur door de bank genomen positief. Hij is aardig goed gelukt, ondanks de moeilijkheden met extra knikverkorters en de
railingterreur ehh.. vereisten dat er balkonnetjes op de traversen moeten.
Net zo moeilijk was het daadwerkelijk fysiek inpassen van de mast. Die komt pal op de hartlijn van de bestaande verbinding te staan en dat plaatsen moest gebeuren terwijl de bestaande lijn niet werd geknipt. In verschillende delen heeft men de mast met een grote kraan van bovenaf tussen de draden laten zakken en toen eenachtste slag gedraaid om de traversen opzij te laten steken. Direct na het aandraaien van de bouten hing men er isolators aan waardoor de mast tijdelijk in dienst kwam als soort steunmast. Dat maakt het mogelijk de hele lijn weer in dienst te nemen zonder dat de nieuwe mast in de weg staat. Er is als het ware gewoon een mast tussenin gepast.
Pas wanneer het station helemaal klaar is, wanneer vanuit het zuiden de grondkabel gereed is (zodat het stuk verbinding ten zuiden van de nieuwe eindmast is verkabeld) én wanneer de netomstandigheden voor VNB het toelaten, dan zal de verbinding opnieuw spanningsloos worden gezet. Men kan dan relatief snel de afspanisolators aanbrengen, de draden knippen en de verbinding met een knikje aansluiten op het nieuwe station. Op deze manier wordt gestreefd naar een zo efficiënt mogelijke werkgang. Niet voor wat betreft arbeid, maar wel om de tijd te minimaliseren waarin de verbinding spanningsloos staat. Sinds aan de andere kant van de Veluwe de verbinding Woudhuis – Hattem geplaagd wordt door kortsluiting en valwinden is het belangrijk dat er elders in het FGU-net zoveel mogelijk verbindingen zo vaak mogelijk beschikbaar zijn.
Oosterhout gaat in dienst in de late winter of het vroege voorjaar van 2023. Tot die tijd hebben we op de netkaart dus een euh.. non-binaire afspanmast die zich tijdelijk steunmast voelt. Nu maar hopen dat ie niet gaat vragen of de H in zijn netkaartpaspoort zelfgekozen in een S kan worden veranderd.
Afbeeldingen: een nieuwe mast inpassen in een bestaande verbinding die nog niet op die dag mag worden geknipt betekent een grote kraan, vier losse blokken, en een fraaie hijsklus tussen spanningsloze draden. Volker Energy en Qirion hadden er een mooi klusje aan. Onder: is dit nu een afspanmast die eigenlijk een steunmast wil zijn? Foto's door Ruben Schots.