HoogspanningsNet - alles over hoogspanning op het het

Hoogspanningstechniek

Hoogspanning en gezondheid?

Antwoord op alle vragen vind je bij het RIVM (NL) of het Departement Leefomgeving (B).

HoogspanningsNet behandelt dit thema met opzet niet zelf. (Waarom niet?)

Geknetter en gebrom?

Geen zorgen, dat is normaal.

HVDC

21 januari 2021 Wat een treurig gezicht op 21 januari op het ENTSO-E Transparency Platform. Alle drie de HVDC-interconnectors die op Nederland aansluiten hadden tegelijk een storing. Lang niet altijd betekent een storing dat de kabel zelf stuk is, maar als dat wel zo is staat ons een heel geheister te wachten. Hoe krijg je in een zeekabel letterlijk en figuurlijk de fout boven water voordat de reparatie kan beginnen?

De COBRA was na ruim drie maanden storing net weer gerepareerd, maar nu gooide een computerstoring roet in het eten. De BritNed viel op 08 december plotseling uit. En ook de last man standing, de NorNed, gaf er op 18 januari de brui aan. Inmiddels doet de COBRA het weer, maar op 21 januari zat Nederland één dag alleen nog via 380 kV AC-landlijnen aan het buitenland vast. Dat is vervelend voor de handelsmarkt en de mogelijkheden om optimaal van windstroom gebruik te kunnen maken, maar bij fysieke schade moet er daarnaast ook iets gerepareerd worden. Dat valt niet mee, ver weg op zee. Laten we eens kijken wat er gebeurt tussen het moment van uitval tot het begin van de reparatie verloopt. We gebruiken daarbij de vorige storing aan de COBRA als voorbeeld.

Het vraagt weinig fantasie om te bedenken hoe de gezichten in Arnhem en Fredericia erbij stonden toen in september de COBRA-cable plotseling uitviel. Nadat in de eerste seconden na de uitval de netbalans is hersteld via FCR of via natuurlijke herschikking (indien de DC-link zich binnen hetzelfde gesynchroniseerde blok bevindt, zoals bij de COBRA het geval is) weet men vrijwel direct of de storing in de computers, de converters of in de kabel zit. Het ontbreken van rook, vlammen of krijsende alarmen in de converterhal zegt al wat, maar meestal is een HVDC-storing subtieler en kan je niet zien wat er stuk is. Soms laat ook de software het afweten. (Windows Update, het zal toch niet? Nee toch?) Maar wat er ook gebeurt, in alle gevallen weet men ogenblikkelijk of de storing in de kabel zelf zit door nauwkeurig het exacte afschakelgedrag van de kabellengte tussen de converters te bekijken.

De COBRA wordt bedreven als een HVDC-bipool: een gesloten systeem dat geen gebruik maakt van de aarde (letterlijk, de planeet) als retourgeleider. Ieder galvanisch contact met de aarde in beide fysieke geleiders is dus een fout. Nu kan elk object in meer of mindere mate een elektrische lading vasthouden: een overschot of tekort aan elektronen ten opzichte van de omgeving. Dit heet zelfcapaciteit en het gaat op voor alle materialen. Een tuinstoel, een mens en ook een hele onweerswolk beschikken over enige capaciteit om lading vast te houden en daarbij een potentiaal ten opzichte van de omgeving te vormen. Zie de St(r)oomcursus voor meer achtergronden.

De geleiderkern van een zeekabel is een lange sliert metaal. Bij de COBRA-Cable tussen Endrup en de Eemshaven weegt de kern al snel een paar duizend ton. Daar kan je aanzienlijk wat lading in kwijt. Als die lading dan ook nog stroomt ontstaat tevens een inductorwerking (spoel) en zal de kabel dit gedrag willen handhaven: hij verzet zich tegen iedere verandering van lading of richting. Bij wisselstroom is het telkens op- en ontladen van de geleidermassa (en deels het medium eromheen) een vervelende hinderpost. Maar bij gelijkstroom hoeft de kabel slechts één keer op zijn potentiaal gebracht te worden tijdens het inschakelen. Een onverwachte afschakeling zorgt voor het omgekeerde: de kabel draagt nog lading en is niet instantaan spanningsloos. de zelfcapaciteit van een paar duizend ton koper plus de spoelwerking moet als het ware vanaf beide kanten leeglopen via de plek van de kortsluiting. De verhouding tussen de theoretische tijd die het neemt om 325 kilometer geleiderkern te ontladen versus de (kortere) tijd die men in de praktijk ziet is daarmee een indicatie voor de afstand van de kortsluiting tot het converterstation, hoewel ingewikkelde bijeffecten zoals capacitief gedrag van de zeebodem zelf en de fysieke richting waarin de gelijkstroom door de kabel liep (van of naar de kortsluitlocatie) ook nog een rol spelen. 

Vervolgens moet men met preciezere apparatuur aan de slag. In de kabel zit behalve een geleider ook een koker optische glasvezeldraden voor telecommunicatie. Bij kabelschade zijn meestal ook deze meeliftende glasvezels beschadigd. Door vereenvoudigd gesteld een puls licht in de glasvezel te sturen en de retourtijd af te wachten (er weerkaatst altijd licht op het breukvlak of het uiteinde van een glasvezeldraad, zelfs onder water met zijn afwijkende brekingsindex) ontstaat een veel nauwkeuriger indicatie van waar de storing zit. Een soortgelijk trucje is ook uit te halen door een puls stroom in de geleiderkern te sturen, maar dit specialistenwerk is in een lange zeekabel minder nauwkeurig dan de glasvezelmethode vanwege iets ingewikkelds dat men dispersie van het spanningsfront noemt, en waar elektriciteit meer last van heeft dan licht.

Uiteindelijk is de locatie van de storing binnen enige honderden meters bekend. Dán pas kijkt men in detail op de netkaart. Ligt de storingslocatie precies in een scheepvaartlaan? Grote kans op een onzorgvuldig anker. Ligt het op een plek waar de kabel een andere kabel of pijpleiding overkruist? Oh oh, ingewikkelder problemen. Maar in alle gevallen wordt er pas een schip op uitgestuurd om fysiek te gaan kijken wanneer de locatie en de verwachte karakteristiek nauwkeurig bekend is.

Maar dan ben je er nog niet. Hoe til je eigenlijk een kabel op die strak op de zeebodem ligt? Er wordt bij de aanleg soms wel voorzien in af en toe een slinger vlakbij kritische plekken zoals overkruisingen met andere infra, maar als er niet voldoende lengte voorhanden is zal de kabel eerst moeten worden gekapt. De twee losse uiteinden kunnen dan boven water worden gehaald, waarna als laatste stap met de hand wordt gekeken totdat dan uiteindelijk de exacte plek van de fout is gevonden. Hip hip hurra, de reparatie kan beginnen. Heeft er iemand honderd meter extra kabel en twee moffen aan boord gebracht? Euh.. hoezo 'niet'?

Afbeeldingen: het ENTSO-E Transparency Platform is IT-technisch zo traag als stroop in januari, maar het is doorgaans een interessante bron van informatie over de markt, de hardware en ongeplande storingen ('forced outages'), zoals we hier zien bij alle drie Nederlandse HVDC-kabels tegelijk. Onder: de COBRA-converterhal in de Eemshaven. Geen rook, geen vuur, geen vonken? Nee. HVDC is over het algemeen ingetogen en veruit de meeste storingen zijn kalme stille afschakelingen. 

10 november 2020 Gisteren is ALEGrO in gebruik genomen, waarmee België en Duitsland op hoogspanningsniveau voor het eerst rechtstreeks zijn verbonden. Maar ALEGrO is HVDC en dat is op land en binnenin een dicht vermaasd AC-netvlak (bijna) een primeur. Waarom is ALEGrO zoals hij is?

ALEGrO, oftewel Aachen Liège Grid Overlay (zie ook het artikel van 05 oktober) is gisteren met een feestelijk coronaproof persmoment in gebruik genomen na enkele weken testen. Voor het eerst zijn België en Duitsland (in de persoon van Elia en Amprion) rechtstreeks verbonden op koppelnetniveau. 1000 MW energie kan worden uitgewisseld. Eh.. tja, leuk, maar er steken talloze interconnecties de landsgrens over en daar kraait geen haan meer naar, zal men denken na een blik op de netkaart. Maar deze verbinding, geheel op land, is uitgevoerd als een HVDC-grondkabel. En dat is (bijna) een unicum in Europa.

Dat de verbinding als HVDC-kabel is uitgevoerd lijkt vreemd in een dicht vermaasd 380 kV-net. Het is immers eenvoudiger om gewoon een nieuwe wisselstroomverbinding aan te leggen, zodat twee converterstations worden vermeden. Voor wie ALEGrO nu ziet als het begin van het einde van bovengrondse hoogspanning: sorry, de landschapsinvloed is niet het hoofdargument geweest. Hoewel een 380 kV-wisselstroomverbinding van negentig kilometer überhaupt niet ondergronds kan worden aangelegd, was de primaire reden om voor gelijkstroom te kiezen toch nog steeds technisch: wisselstroom zou hier grote problemen geven door zogeheten loop flows.

Europa beschikt over een groot koppelnet waarin alle landen en de grote eilanden zijn gekoppeld. Door seizoensverschillen (belangrijk bij hernieuwbare energie) en door prijsverschillen in brandstoffen is het normaal dat er altijd plekken en landen in het netwerk te weinig produceren voor hun eigenverbruik en anderen juist teveel. Nu eens de een, dan weer de ander. Precies daarvoor is een gekoppeld net ook zo handig: je kan handelen in elektriciteit en elkaar uit de brand helpen. Op het netwerk zelf dicteert natuurkunde: vermogen loopt door alle verbindingen in het netwerk altijd van plekken met productie naar plekken met vraag. In Europa loopt in de winter doorgaans grootschalig vermogen vanuit het noorden naar het zuiden. Dit soort langeafstandsstromen worden loop flows genoemd en net zoals verkeer op doorreis neemt het veel ruimte in op de wegen. Loop flows zijn een van de grotere vraagstukken van de hoogspanningswereld op dit moment.

Vermogen volgt in een wisselstroomnet de weg van de minste weerstand. Het enige wat je dus kan doen om vermogen te sturen is de weerstand van een verbinding kunstmatig vergroten, zodat vermogen liever een andere (om)weg neemt en zich beter verdeelt. Men doet dit met zogeheten dwarsregeltransformators. In België staan dwarsregelaars op Van Eyck en Zandvliet, om te voorkomen dat grote vermogens vanuit Nederland het Belgische net overbelasten op weg naar Zuid Europa. Maar dwarsregeling werkt slechts beperkt. De berekeningen toonden aan dat klassieke dwarsregeling niet voldoende zou zijn in een verbinding op de plek van ALEGrO om overbelasting en ongewenst grote loop flows te voorkomen voorbij Lixhe. En daar komt HVDC om de hoek kijken. Hoewel HVDC twee dure en ingewikkelde converters vereist, is het vermogen over zo'n verbinding stuurbaar tot elke megawatt. Op die manier kan binnen een wisselstroomnet dat wordt geregeerd door de natuurkunde van samengesteld weerstandsgedrag (impedantie) toch alsnog op gecontroleerde wijze stroom worden uitgewisseld tussen België en Duitsland. Hoe dan ook. Wanneer dan ook. Welke richting in dan ook.

Waarom zien we dit dan niet vaker? Het laat zich raden, de afweging tussen de meerprijs en iets lagere betrouwbaarheid van HVDC moet worden afgezet tegen de kosten van additionele netverzwaringen rondom de bestaande eindstations van een nieuwe verbinding wanneer deze als gangbare wisselstroomverbinding wordt aangelegd. Meestal blijkt HVDC het dan vooralsnog af te leggen. Behalve als de voordelen zo groot zijn dat het daadwerkelijk het betere alternatief is. Bij ALEGrO speelde onzichtbaarheid in het landschap de belangrijkste bijrol. Bij de twee verbindingen die ALEGrO in Europa zijn voorgegaan op dit gebied, INELFE (Frankrijk – Spanje) en de Sydvästlänk (Zweden), speelde het landschapsargument niet.  

Feit is dat België en Duitsland deze winter voor het eerst kunnen handelen in elektriciteit zonder dat het via een ander land moet lopen. De kans op elektriciteitsschaarste wordt daarmee opnieuw een steeds verder vergeten boze droom van vroeger.

Afbeeldingen: ALEGrO op de netkaart: voor het eerst zijn België en Duitsland op koppelnetniveau verbonden. Midden en onder: een foto van de bouw van het converterstation op Lixhe en een deel van de plushal van de NEMO-converter, de andere HVDC-verbinding van België, met Groot Brittanië. (Vanwege de coronabeperkingen had ALEGrO geen open dag voor geïnteresseerden, we zullen het tot nader order dus met oud beeldmateriaal moeten doen.)

27 september 2020 HVDC-interconnecties zijn in het gekoppelde hoogspanningsnet van Europa gemeengoed. Nergens anders op de wereld zie je zoveel van zulke interconnectoren. Naast de techniek zijn ook de namen van High Voltage Direct Current verbindingen veelzeggend over hun motivatie en zelfs over Europese natiepolitiek.

Europa is een bergachtig schiereiland met nogal wat zeeën, zeestraten, baaien en dikke eilanden: het perfecte speelveld voor HVDC-zeekabels. Wie op de netkaart kijkt ziet dat veel HVDC-verbindingen interconnectors zijn tussen twee landen. Naast de technische motivatie zijn het ook prestigeprojecten van honderden miljoenen euro's die een symbolische waarde hebben. Letterlijk en figuurlijk verbinden ze twee landen, twee machtsblokken of zelfs twee culturen. Met die gedachte in het achterhoofd veranderen de trotse namen van HVDC-interconnectors stiekem in aanwijzingen over de achterliggende motivatie en zelfs over hoe de landen naar elkaar kijken. 

Een aantal interconnectors draagt koeltjes de naam van de watervlakte die ze kruisen (Cross-Skagerak, Cross-Channel) of van het overkoepelende gebied, zoals de Baltic Cable (die de geografisch vaag begrensde naam van heel noordoost Europa voert) of de Celtic Interconnector die Ierland en Frankrijk moet gaan verbinden. Gebruikelijk is ook een afkorting van de landen of cultuurblokken op de uiteinden (BritNed, NorNed, Fenno-skan, Konti-skan, France-Angleterre of SvePol). Het verbergt niks en geeft aan dat er sprake lijkt te zijn geweest van een gelijke onderhandelingsvoet.

Maar soms blijkt een onevenwicht. NORD.Link (die hoofdletters en dat puntje horen daar echt, want dat is hip en cool en lame en zo) wordt aangelegd tussen Noorwegen en Duitsland. De naam verraadt welk van de twee landen waarschijnlijk de meeste behoefte had aan de verbinding: Duitsland vindt Noorwegen (met zijn hydropower) interessanter dan andersom en trekt zich graag op aan het woord Nord. In dezelfde categorie valt de Viking Link (Denemarken – Engeland, in aanleg). De kabel loopt echter niet over het Viking district in de Noordzee, dus hier moet welhaast sprake zijn van Britten die graag dwepen met het stoere imago van vikingen. 

Een andere groep kabels draagt acroniemen. Inelfe (Frankrijk – Spanje) kan je uitspreken als een neutraal woord, maar het is een acroniem van Interconexión Eléctrica Francia-España. Soms is er dieper nagedacht. ALEGRO (België – Duitsland, eind dit jaar gereed) is een acroniem van Aachen Liège Grid Overlay. Maar wie een beetje bekend is met muziek zal direct zien dat het woord sterk lijkt op het identiek uitgesproken allegro, een van oorsprong Italiaanse term voor een vrolijk of opgewekt muziekstuk. 

Buitenbeentjes zijn er ook. Kontek (Duitsland – Denemarken) heet voluit Kontinent – Elkraft, hetgeen een samenstelsel is van het Duitse woord voor continent en de naam van een voormalig Deens netbeheerder die later opging in Energinet. Een beetje onlogische combinatie. Een andere vreemde eend in de bijt is NEMO, tussen België en Engeland. Nemo is weliswaar de naam van een personage uit Jules Verne's 20.000 mijlen onder zee, maar het woord zelf betekent in het Latijn niemand. Bij HoogspanningsNet hebben we ooit een roddel opgevangen dat het woord uit de pen komt van een hoge pief bij Elia die in het begin van de planfase invloed heeft gehad op in ieder geval de werknaam van het project, maar zeker weten doen we het niet.

Tenslotte heb je nog de financiën. COBRA (Nederland – Denemarken, overigens tijdelijk defect sinds eind september) is een acroniem van COpenhagen BRussels Amsterdam. Een opmerkelijke naam voor een kabel tussen Endrup en de Eemshaven en die niets te maken heeft met Amsterdam, Kopenhagen of laat staan Brussel. Het is speculatief, maar bij HoogspanningsNet vermoeden we dat er sprake is van een werknaam om het project interessanter te laten klinken voor te overtuigen partijen. Omdat DenNed onhandig veel lijkt op Tennet (zeker met een verstopte neus) zal er gekunsteld gezocht zijn naar iets anders pakkends. Toen bleek dat cobra wel goed uitspreekt in zowel Engels, Deens als Nederlands heeft men die werknaam waarschijnlijk maar zo gelaten…

Afbeelding: op de netkaart kan je tientallen HVDC-interconnectors vinden. Midden en onder: in 2007 zette NorNed een wereldrecord neer en dat mocht gezien worden, getuige het fancy convertergebouw met vlaggen en design voor de persmomentjes buiten vlak voor de gevel. Twaalf jaar later kwam COBRA en keerde de nuchterheid terug: een saaie functionele doos.

06 september 2019 Hans Brinker (Tennet) en Wickie de Viking (Energinet) hebben de afgelopen jaren heel wat woensdagmiddagen samen op het strand gespeeld. En nu is hun nieuwe gezamenlijke project klaar: de COBRA-Cable is in dienst genomen. Deze nieuwe HVDC-zeekabel verbindt het Nederlandse en Deense hoogspanningsnet rechtstreeks en maakt energie-uitwisseling makkelijker.

De COBRA-Cable kwam hier al eens vaker voorbij (zie o.a. 'Åh rart, det COBRA-søkabel er færdig' van 09 november vorig jaar), maar het ging wat langzamer dan eerst de bedoeling was. In elk geval, Hans heeft zijn vinger uit de dijk gehaald en Wickie uit zijn neus, en nu is de 700 MVA rechtstreekse uitwisselingscapaciteit tussen Endrup en de Eemshaven operationeel. Op 07 september is de oplevering voor de pers.

Zoals gewoonlijk is het persmoment slechts een formaliteit. Hoogspanningsprojecten zijn niet zoals je kerstboom (de kat naar buiten, lampjes erin, stekker erin en klaar). Een hoogspanningsverbinding, zeker een interconnectie, wordt pas na uitvoerig testen in dienst genomen. In de praktijk was de kabel begin dit jaar al gelegd en ging hij begin augustus al technisch in dienst. Gedurende de afgelopen maand werd dus al vermogen uitgewisseld tussen Nederland en Denemarken, alleen nog niet voor de open commerciële markt.

Tijdens de testfase spelen Tennet en Energinet zelf voor producent en afnemer door als 'klant' vermogen in te kopen of aan te reiken. Onder normale omstandigheden mogen neutrale netbeheerders dat niet doen, behalve bij inzet van noodvermogen, de N-1 toestand of voor netverliescompensatie. Maar tijdens de test van de interconnector is er een tijdelijke ontheffing. Dat is nodig om te voorkomen dat de prijsniveaus in de handelsblokken NL en DK1 verstoord raken als er onverhoopt iets begint te roken tijdens de tests.

De COBRA-cable (acroniem van COpenhagen BRussels Amsterdam) werkt volgens een bipolair schema, wordt bedreven op 320 kV en heeft zogeheten VSC-HVDC converters van fabrikant Siemems. VSC staat voor Voltage Source Converter. Beetje technisch verhaal, maar het is een techniek waarbij de hoeveelheid vermogen op de kabel wordt gestuurd door met de spanning in de gelijkrichters te spelen, in plaats van met de stroomsterkte zoals in de twee oudere Nederlandse HVDC-installaties NorNed en BritNed. De kabels zelf (twee fysieke draden) zijn gefabriceerd door Prysmian.

Tegenwoordig wordt iedere nieuwe interconnectie 'groene kabel' genoemd. Dat is natuurlijk een marketingterm, want eigenlijk is het toverwoord uitwisseling. Windenergie is in Denemarken al groot. Nederland heeft op dit moment nog een productiepark op grotendeels gas en kolen. Als het hard waait heeft Denemarken al snel teveel windenergie zodat het verhandeld wordt richting Noorwegen (opslag in pompmeren) en richting Duitsland, Zweden en nu ook Nederland (consumptie). Andersom, als het niet waait, is er een productietekort en moet Denemarken energie importeren. Op dat soort momenten is het handig om ook koppeling te hebben met centrales die onafhankelijk werken van het weer.

Interconnecties zorgen voor een stabieler net, efficiënter gebruik van zowel hernieuwbare als fossiele bronnen (die kan je uitsparen als je ook wind voorhanden hebt) en ook een betere prijsbalans. Allemaal noodzakelijk voor de energietransitie. En voor ons hoogspanningsmensen is er nog een extra pluspool– eh, pluspunt, een extra route voor vermogen verkleint de kans op cascadestoringen of onderhoudsknelpunten. Meer routes zorgen voor meer robuustheid. Alles bij elkaar is het dus toch een mooie dag voor pylon geeks, ook al komt er geen meter bovengronds net bij.

Afbeeldingen: de COBRA-Cable op de netkaart. Midden: het converterstation aan de Nederlandse zijde staat in de Eemshaven. Aan de buitenkant op onze foto is het gebouw niet zo spannend, maar binnenin is het beam me up, Scotty. De kabel is 325 km lang en staat bij Tennet op de balans voor eh… het equivalent van 2,8 miljoen elektrische fietsen. Dat we dat ook even weten.

06 december 2018 De Goedheiligman brengt dit jaar niet alleen iets moois mee voor Belgische kinderen. Ook voor volwassenen is er een cadeautje: de Nemo Link is klaar! België en Engeland zijn nu verbonden en de kans op elektriciteitsschaarste is verder afgenomen.

Nou ja, cadeautje… Het 140 kilometer lange draadje staat op de balans voor 690 miljoen euro, maar in tegenstelling tot bijvoorbeeld afschrijvingen op staatsobligaties krijgen we er deze keer echt iets voor terug: 1000 MVA harde interconnectorcapaciteit tussen Zeebrugge en Richborough. Na een testfase die de rest van deze maand duurt zal de kabel begin 2019 worden vrijgegeven voor de markt.  

België was het laatste land aan de Noordwest Europese kust dat nog geen kennis had gemaakt met HVDC. Andere landen zoals Nederland (NorNed, 2010), Duitsland (1994, Baltic Cable), Frankrijk en Engeland (France Angelterre, 1961) en pionier Zweden (Gotlandlink, 1954) hadden al langer DC connecties met elkaar. Nemo wordt bedreven op 400 kV DC in het schema van een symmetrische monopool. Dat betekent dat er twee geleiderkernen liggen die in de praktijk allebei een potentiaal van 400 kV hebben ten opzichte van de aarde (en 800 kV tot elkaar) en dat de stroomrichting in beide geleiders omgekeerd loopt. De converters zijn door Siemens geleverd en zijn van het type VSC (voltage source converters). Deze zijn kleiner en beter stuurbaar dan traditionele thyristors in oudere converterinstallaties.

Er is ook een primeur: de kabel heeft een mantel die gedeeltelijk uit XLPE bestaat. Voorheen werd dat niet gebruikt in DC-zeekabels omdat het materiaal onder water wel eens last kreeg van minuscule barstjes, waterbomen en deelontladingen in de isolatie, zodat men voorheen liever oliegedrenkt papier gebruikte.    

Een ander uniek kenmerk is dat Nemo gebruikt kan worden als blackstartvoorziening. In het geval van een bijna onmogelijk, maar theoretisch denkbare totale uitval van het hele Belgische net waarbij ook geen beroep kan worden gedaan op de buurlanden, kan via een aggregaat het converterarray worden opgestart waarna een wisselstroom kan worden gegenereerd. 

HVDC-interconnectors dragen doorgaans trotse namen zoals BritNed, Cross-Skagerak en Hansa Powerbridge. Nemo Link lijkt te refereren naar de onverschrokken kapitein Nemo uit het boek van Jules Verne, 20.000 leagues under the Sea), maar bij HoogspanningsNet hebben we op de open dag van het converterstation in aanbouw (afgelopen mei) opgevangen dat daar misschien wel helemaal geen projectgroep of inspraakprocedure aan te pas is gekomen. Een hoog persoon binnen Elia, een balpen wiebelend tussen twee vingers en een blik naar het plafond. Of het ook echt zo is gegaan? Dat zullen we waarschijnlijk nooit weten – iets wat eigenlijk ook weer goed past bij de afloop van het boek van Jules Verne.

Voor nu feliciteren we Elia en NationalGrid met de oplevering van dit mooie project en we hopen dat de testfase voorspoedig verloopt. Een mooie afloop na tien jaar hard werken. 

Afbeelding: De binnenkant van de converterhal, waar wisselstroom in gelijkstroom wordt omgezet, is een bijna buitenaards gezicht. Foto door (en via) Elia, omdat het op de open dag niet was toegestaan zelf foto's te maken van de installatie. Onder: demonstratiemodel van de gebruikte kabels. Het witte materiaal is XLPE, nu nog uniek in nieuwe zware HVDC-zeekabels.